cell phone WLAN / Wi-Fi

Wi-Fi (pronounced wye fye, IPA: /ˈwaɪfaɪ/), a wireless-technology brand owned by the Wi-Fi Alliance, promotes standards with the aim of improving the interoperability of wireless local area network products based on the IEEE 802.11 standards. Common applications for Wi-Fi include Internet and VoIP phone access, gaming, and network connectivity for consumer electronics such as televisions, DVD players, and digital cameras.

The Wi-Fi Alliance, a consortium of separate and independent companies, agrees on a set of common interoperable products based on the family of IEEE 802.11 standards.[1] The Wi-Fi Alliance certifies products via a set of defined test-procedures to establish interoperability. Those manufacturers with membership of Wi-Fi Alliance and whose products pass these interoperability tests can mark their products and product packaging with the Wi-Fi logo.

Wi-Fi technologies have gone through several generations since their inception in 1997. The Microsoft Windows, Apple Mac OS X and open source Unix and Linux operating systems support Wi-Fi to different extents.

Uses

A Wi-Fi-enabled device such as a PC, game console, cell phone, MP3 player or PDA can connect to the Internet when within range of a wireless network connected to the Internet. The coverage of one or more interconnected access points — called a hotspot — can comprise an area as small as a single room with wireless-opaque walls or as large as many square miles covered by overlapping access points. Wi-Fi technology has served to set up mesh networks, for example, in London.Both architectures can operate in community networks.[citation needed]

In addition to restricted use in homes and offices, Wi-Fi can make access publicly available at Wi-Fi hotspots provided either free of charge or to subscribers to various providers. Organizations and businesses such as airports, hotels and restaurants often provide free hotspots to attract or assist clients. Enthusiasts or authorities who wish to provide services or even to promote business in a given area sometimes provide free Wi-Fi access. Metropolitan-wide WiFi (Muni-Fi) already has more than 300 projects in process.

Wi-Fi also allows connectivity in peer-to-peer (wireless ad-hoc network) mode, which enables devices to connect directly with each other. This connectivity mode can prove useful in consumer electronics and gaming applications.

When wireless networking technology first entered the market many problems ensued for consumers who could not rely on products from different vendors working together. The Wi-Fi Alliance began as a community to solve this issue — aiming to address the needs of the end-user and to allow the technology to mature. The Alliance created the branding Wi-Fi CERTIFIED to reassure consumers that products will interoperate with other products displaying the same branding.

Many consumer devices use Wi-Fi. Amongst others, personal computers can network to each other and connect to the Internet, mobile computers can connect to the Internet from any Wi-Fi hotspot, and digital cameras can transfer images wirelessly.

Routers which incorporate a DSL-modem or a cable-modem and a Wi-Fi access point, often set up in homes and other premises, provide Internet-access and internetworking to all devices connected (wirelessly or by cable) to them. One can also connect Wi-Fi devices in ad-hoc mode for client-to-client connections without a router.

As of 2007 Wi-Fi technology had spread widely within business and industrial sites. In business environments, just like other environments, increasing the number of Wi-Fi access-points provides redundancy, support for fast roaming and increased overall network-capacity by using more channels or by defining smaller cells. Wi-Fi enables wireless voice-applications ( VoWLAN or WVOIP). Over the years, Wi-Fi implementations have moved toward "thin" access-points, with more of the network intelligence housed in a centralized network appliance, relegating individual access-points to the role of mere "dumb" radios. Outdoor applications may utilize true mesh topologies. As of 2007 Wi-Fi installations can provide a secure computer networking gateway, firewall, DHCP server, intrusion detection system, and other functions.

Advantages

Wi-Fi allows LANs to be deployed without cabling for client devices, typically reducing the costs of network deployment and expansion. Spaces where cables cannot be run, such as outdoor areas and historical buildings, can host wireless LANs.

As of 2007 wireless network adapters are built into most modern laptops. The price of chipsets for Wi-Fi continues to drop, making it an economical networking option included in even more devices. Wi-Fi has become widespread in corporate infrastructures, which also helps with the deployment of RFID technology that can piggyback on Wi-Fi.

Different competitive brands of access points and client network interfaces are inter-operable at a basic level of service. Products designated as "Wi-Fi Certified" by the Wi-Fi Alliance are backwards inter-operable. Wi-Fi is a global set of standards. Unlike mobile telephones, any standard Wi-Fi device will work anywhere in the world.

Wi-Fi is widely available in more than 250,000[citation needed] public hotspots and tens of millions of homes and corporate and university campuses worldwide. WPA is not easily cracked if strong passwords are used and WPA2 encryption has no known weaknesses. New protocols for Quality of Service (WMM) make Wi-Fi more suitable for latency-sensitive applications (such as voice and video), and power saving mechanisms (WMM Power Save) improve battery operation.

Disadvantages

Spectrum assignments and operational limitations are not consistent worldwide. Most of Europe allows for an additional 2 channels beyond those permitted in the U.S. for the 2.4 GHz band. (1–13 vs. 1–11); Japan has one more on top of that (1–14). Europe, as of 2007, is now essentially homogeneous in this respect. A very confusing aspect is the fact a Wi-Fi signal actually occupies five channels in the 2.4 GHz band resulting in only three non-overlapped channels in the U.S.: 1, 6, 11, and four in Europe: 1, 5, 9, 13.

Some countries, such as Italy, formerly required a 'general authorization' for any Wi-Fi used outside an operator's own premises, or require something akin to an operator registration.[citation needed] Equivalent isotropically radiated power (EIRP) in the EU is limited to 20 dBm (0.1 W).

Power consumption is fairly high compared to some other low-bandwidth standards, such as Zigbee and Bluetooth, making battery life a concern.

The most common wireless encryption standard, Wired Equivalent Privacy or WEP, has been shown to be easily breakable even when correctly configured. Wi-Fi Protected Access (WPA and WPA2), which began shipping in 2003, aims to solve this problem and is now available on most products. Wi-Fi Access Points typically default to an "open" (encryption-free) mode. Novice users benefit from a zero-configuration device that works out of the box, but this default is without any wireless security enabled, providing open wireless access to their LAN. To turn security on requires the user to configure the device, usually via a software graphical user interface (GUI). Wi-Fi networks that are open (unencrypted) can be monitored and used to read and copy data (including personal information) transmitted over the network, unless another security method is used to secure the data, such as a VPN or a secure web page. (See HTTPS/Secure Socket Layer.)

Many 2.4 GHz 802.11b and 802.11g Access points default to the same channel on initial startup, contributing to congestion on certain channels. To change the channel of operation for an access point requires the user to configure the device.

Wi-Fi networks have limited range. A typical Wi-Fi home router using 802.11b or 802.11g with a stock antenna might have a range of 32 m (120 ft) indoors and 95 m (300 ft) outdoors. Range also varies with frequency band. Wi-Fi in the 2.4 GHz frequency block has slightly better range than Wi-Fi in the 5 GHz frequency block. Outdoor range with improved (directional) antennas can be several kilometres or more with line-of-sight.

Wi-Fi performance also decreases exponentially as the range increases.

Wi-Fi pollution, or an excessive number of access points in the area, especially on the same or neighboring channel, can prevent access and interfere with the use of other access points by others, caused by overlapping channels in the 802.11g/b spectrum, as well as with decreased signal-to-noise ratio (SNR) between access points. This can be a problem in high-density areas, such as large apartment complexes or office buildings with many Wi-Fi access points. Additionally, other devices use the 2.4 GHz band: microwave ovens, security cameras, Bluetooth devices and (in some countries) Amateur radio, video senders, cordless phones and baby monitors can cause significant additional interference. General guidance to those who suffer these forms of interference or network crowding is to migrate to a WiFi 5 GHz product, (802.11a or the newer 802.11n IF it has 5GHz/11a support) as the 5 GHz band is relatively unused and there are many more channels available. This also requires users to set up the 5 GHz band to be the preferred network in the client and to configure each network band to a different name (SSID).

It is also an issue when municipalities,or other large entities such as universities, seek to provide large area coverage. This openness is also important to the success and widespread use of 2.4 GHz Wi-Fi.

Interoperability issues between non WiFi brands or proprietary deviations from the standard can disrupt connections or lower throughput speeds on all user's devices that are within range, to include the non-WiFi or proprietary product.

source:en.wikipedia.org